This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009) (Proof shortened by Fan Zheng, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flmulnn0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ≤ ( ⌊ ‘ ( 𝑁 · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 3 | simpr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 4 | simpl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → 𝑁 ∈ ℕ0 ) | |
| 5 | 4 | nn0red | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → 𝑁 ∈ ℝ ) |
| 6 | 4 | nn0ge0d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → 0 ≤ 𝑁 ) |
| 7 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 9 | 2 3 5 6 8 | lemul2ad | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ≤ ( 𝑁 · 𝐴 ) ) |
| 10 | 5 3 | remulcld | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( 𝑁 · 𝐴 ) ∈ ℝ ) |
| 11 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 12 | flcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) | |
| 13 | zmulcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ∈ ℤ ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ∈ ℤ ) |
| 15 | flge | ⊢ ( ( ( 𝑁 · 𝐴 ) ∈ ℝ ∧ ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ≤ ( 𝑁 · 𝐴 ) ↔ ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ≤ ( ⌊ ‘ ( 𝑁 · 𝐴 ) ) ) ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ≤ ( 𝑁 · 𝐴 ) ↔ ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ≤ ( ⌊ ‘ ( 𝑁 · 𝐴 ) ) ) ) |
| 17 | 9 16 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ ) → ( 𝑁 · ( ⌊ ‘ 𝐴 ) ) ≤ ( ⌊ ‘ ( 𝑁 · 𝐴 ) ) ) |