This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modvalr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 2 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 4 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 5 | reflcl | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 6 | 5 | recnd | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 8 | 3 7 | mulcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) = ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) ) |
| 10 | 1 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) ) |