This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flodddiv4t2lthalf | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) · 2 ) < ( 𝑁 / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flodddiv4lt | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) ) | |
| 2 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 3 | 4re | ⊢ 4 ∈ ℝ | |
| 4 | 3 | a1i | ⊢ ( 𝑁 ∈ ℤ → 4 ∈ ℝ ) |
| 5 | 4ne0 | ⊢ 4 ≠ 0 | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℤ → 4 ≠ 0 ) |
| 7 | 2 4 6 | redivcld | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 / 4 ) ∈ ℝ ) |
| 8 | 7 | flcld | ⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℤ ) |
| 9 | 8 | zred | ⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ∈ ℝ ) |
| 10 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 11 | 10 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℝ+ ) |
| 12 | 9 7 11 | ltmul1d | ⊢ ( 𝑁 ∈ ℤ → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) ↔ ( ( ⌊ ‘ ( 𝑁 / 4 ) ) · 2 ) < ( ( 𝑁 / 4 ) · 2 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) < ( 𝑁 / 4 ) ↔ ( ( ⌊ ‘ ( 𝑁 / 4 ) ) · 2 ) < ( ( 𝑁 / 4 ) · 2 ) ) ) |
| 14 | 1 13 | mpbid | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) · 2 ) < ( ( 𝑁 / 4 ) · 2 ) ) |
| 15 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 16 | 15 | halfcld | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 / 2 ) ∈ ℂ ) |
| 17 | 2cnd | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℂ ) | |
| 18 | 2ne0 | ⊢ 2 ≠ 0 | |
| 19 | 18 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ≠ 0 ) |
| 20 | 16 17 19 | divcan1d | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 𝑁 / 2 ) / 2 ) · 2 ) = ( 𝑁 / 2 ) ) |
| 21 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 22 | 21 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 23 | divdiv1 | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑁 / 2 ) / 2 ) = ( 𝑁 / ( 2 · 2 ) ) ) | |
| 24 | 15 22 22 23 | syl3anc | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) / 2 ) = ( 𝑁 / ( 2 · 2 ) ) ) |
| 25 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 26 | 25 | a1i | ⊢ ( 𝑁 ∈ ℤ → ( 2 · 2 ) = 4 ) |
| 27 | 26 | oveq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 / ( 2 · 2 ) ) = ( 𝑁 / 4 ) ) |
| 28 | 24 27 | eqtrd | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) / 2 ) = ( 𝑁 / 4 ) ) |
| 29 | 28 | oveq1d | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 𝑁 / 2 ) / 2 ) · 2 ) = ( ( 𝑁 / 4 ) · 2 ) ) |
| 30 | 20 29 | eqtr3d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 / 2 ) = ( ( 𝑁 / 4 ) · 2 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) = ( ( 𝑁 / 4 ) · 2 ) ) |
| 32 | 14 31 | breqtrrd | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( ( ⌊ ‘ ( 𝑁 / 4 ) ) · 2 ) < ( 𝑁 / 2 ) ) |