This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flodddiv4t2lthalf | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( N / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flodddiv4lt | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( |_ ` ( N / 4 ) ) < ( N / 4 ) ) |
|
| 2 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 3 | 4re | |- 4 e. RR |
|
| 4 | 3 | a1i | |- ( N e. ZZ -> 4 e. RR ) |
| 5 | 4ne0 | |- 4 =/= 0 |
|
| 6 | 5 | a1i | |- ( N e. ZZ -> 4 =/= 0 ) |
| 7 | 2 4 6 | redivcld | |- ( N e. ZZ -> ( N / 4 ) e. RR ) |
| 8 | 7 | flcld | |- ( N e. ZZ -> ( |_ ` ( N / 4 ) ) e. ZZ ) |
| 9 | 8 | zred | |- ( N e. ZZ -> ( |_ ` ( N / 4 ) ) e. RR ) |
| 10 | 2rp | |- 2 e. RR+ |
|
| 11 | 10 | a1i | |- ( N e. ZZ -> 2 e. RR+ ) |
| 12 | 9 7 11 | ltmul1d | |- ( N e. ZZ -> ( ( |_ ` ( N / 4 ) ) < ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( ( N / 4 ) x. 2 ) ) ) |
| 13 | 12 | adantr | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( |_ ` ( N / 4 ) ) < ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( ( N / 4 ) x. 2 ) ) ) |
| 14 | 1 13 | mpbid | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( ( N / 4 ) x. 2 ) ) |
| 15 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 16 | 15 | halfcld | |- ( N e. ZZ -> ( N / 2 ) e. CC ) |
| 17 | 2cnd | |- ( N e. ZZ -> 2 e. CC ) |
|
| 18 | 2ne0 | |- 2 =/= 0 |
|
| 19 | 18 | a1i | |- ( N e. ZZ -> 2 =/= 0 ) |
| 20 | 16 17 19 | divcan1d | |- ( N e. ZZ -> ( ( ( N / 2 ) / 2 ) x. 2 ) = ( N / 2 ) ) |
| 21 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 22 | 21 | a1i | |- ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 23 | divdiv1 | |- ( ( N e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
|
| 24 | 15 22 22 23 | syl3anc | |- ( N e. ZZ -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) |
| 25 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 26 | 25 | a1i | |- ( N e. ZZ -> ( 2 x. 2 ) = 4 ) |
| 27 | 26 | oveq2d | |- ( N e. ZZ -> ( N / ( 2 x. 2 ) ) = ( N / 4 ) ) |
| 28 | 24 27 | eqtrd | |- ( N e. ZZ -> ( ( N / 2 ) / 2 ) = ( N / 4 ) ) |
| 29 | 28 | oveq1d | |- ( N e. ZZ -> ( ( ( N / 2 ) / 2 ) x. 2 ) = ( ( N / 4 ) x. 2 ) ) |
| 30 | 20 29 | eqtr3d | |- ( N e. ZZ -> ( N / 2 ) = ( ( N / 4 ) x. 2 ) ) |
| 31 | 30 | adantr | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( N / 2 ) = ( ( N / 4 ) x. 2 ) ) |
| 32 | 14 31 | breqtrrd | |- ( ( N e. ZZ /\ -. 2 || N ) -> ( ( |_ ` ( N / 4 ) ) x. 2 ) < ( N / 2 ) ) |