This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flltnz | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℝ ) | |
| 4 | fllelt | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 6 | 5 | simpld | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 7 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ¬ 𝐴 ∈ ℤ ) | |
| 8 | flidz | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ ℤ ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ ℤ ) ) |
| 10 | 7 9 | mtbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 11 | 10 | neqned | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≠ 𝐴 ) |
| 12 | 11 | necomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) |
| 13 | 2 3 6 12 | leneltd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) < 𝐴 ) |