This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flltnz | |- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) e. RR ) |
| 3 | simpl | |- ( ( A e. RR /\ -. A e. ZZ ) -> A e. RR ) |
|
| 4 | fllelt | |- ( A e. RR -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) |
|
| 5 | 4 | adantr | |- ( ( A e. RR /\ -. A e. ZZ ) -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) ) |
| 6 | 5 | simpld | |- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) <_ A ) |
| 7 | simpr | |- ( ( A e. RR /\ -. A e. ZZ ) -> -. A e. ZZ ) |
|
| 8 | flidz | |- ( A e. RR -> ( ( |_ ` A ) = A <-> A e. ZZ ) ) |
|
| 9 | 8 | adantr | |- ( ( A e. RR /\ -. A e. ZZ ) -> ( ( |_ ` A ) = A <-> A e. ZZ ) ) |
| 10 | 7 9 | mtbird | |- ( ( A e. RR /\ -. A e. ZZ ) -> -. ( |_ ` A ) = A ) |
| 11 | 10 | neqned | |- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) =/= A ) |
| 12 | 11 | necomd | |- ( ( A e. RR /\ -. A e. ZZ ) -> A =/= ( |_ ` A ) ) |
| 13 | 2 3 6 12 | leneltd | |- ( ( A e. RR /\ -. A e. ZZ ) -> ( |_ ` A ) < A ) |