This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | ||
| flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | ||
| Assertion | fliftel1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 𝐹 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | |
| 3 | flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | |
| 4 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 6 | 5 | elrnmpt1 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 〈 𝐴 , 𝐵 〉 ∈ V ) → 〈 𝐴 , 𝐵 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 7 | 4 6 | mpan2 | ⊢ ( 𝑥 ∈ 𝑋 → 〈 𝐴 , 𝐵 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 9 | 8 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) |
| 10 | df-br | ⊢ ( 𝐴 𝐹 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 𝐹 𝐵 ) |