This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
||
| flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
||
| Assertion | fliftel1 | |- ( ( ph /\ x e. X ) -> A F B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| 2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
|
| 3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
|
| 4 | opex | |- <. A , B >. e. _V |
|
| 5 | eqid | |- ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. ) |
|
| 6 | 5 | elrnmpt1 | |- ( ( x e. X /\ <. A , B >. e. _V ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
| 7 | 4 6 | mpan2 | |- ( x e. X -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
| 8 | 7 | adantl | |- ( ( ph /\ x e. X ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
| 9 | 8 1 | eleqtrrdi | |- ( ( ph /\ x e. X ) -> <. A , B >. e. F ) |
| 10 | df-br | |- ( A F B <-> <. A , B >. e. F ) |
|
| 11 | 9 10 | sylibr | |- ( ( ph /\ x e. X ) -> A F B ) |