This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
||
| flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
||
| Assertion | fliftel | |- ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| 2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
|
| 3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
|
| 4 | df-br | |- ( C F D <-> <. C , D >. e. F ) |
|
| 5 | 1 | eleq2i | |- ( <. C , D >. e. F <-> <. C , D >. e. ran ( x e. X |-> <. A , B >. ) ) |
| 6 | eqid | |- ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. ) |
|
| 7 | opex | |- <. A , B >. e. _V |
|
| 8 | 6 7 | elrnmpti | |- ( <. C , D >. e. ran ( x e. X |-> <. A , B >. ) <-> E. x e. X <. C , D >. = <. A , B >. ) |
| 9 | 4 5 8 | 3bitri | |- ( C F D <-> E. x e. X <. C , D >. = <. A , B >. ) |
| 10 | opthg2 | |- ( ( A e. R /\ B e. S ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) ) |
|
| 11 | 2 3 10 | syl2anc | |- ( ( ph /\ x e. X ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) ) |
| 12 | 11 | rexbidva | |- ( ph -> ( E. x e. X <. C , D >. = <. A , B >. <-> E. x e. X ( C = A /\ D = B ) ) ) |
| 13 | 9 12 | bitrid | |- ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |