This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fleqceilz | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 2 | ceilid | ⊢ ( 𝐴 ∈ ℤ → ( ⌈ ‘ 𝐴 ) = 𝐴 ) | |
| 3 | 1 2 | eqtr4d | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) |
| 4 | eqeq1 | ⊢ ( ( ⌊ ‘ 𝐴 ) = 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) ) | |
| 5 | 4 | adantr | ⊢ ( ( ( ⌊ ‘ 𝐴 ) = 𝐴 ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) ) |
| 6 | ceilidz | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( ⌈ ‘ 𝐴 ) = 𝐴 ) ) | |
| 7 | eqcom | ⊢ ( ( ⌈ ‘ 𝐴 ) = 𝐴 ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) | |
| 8 | 6 7 | bitrdi | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ 𝐴 = ( ⌈ ‘ 𝐴 ) ) ) |
| 9 | 8 | biimprd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( ⌊ ‘ 𝐴 ) = 𝐴 ∧ 𝐴 ∈ ℝ ) → ( 𝐴 = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
| 11 | 5 10 | sylbid | ⊢ ( ( ( ⌊ ‘ 𝐴 ) = 𝐴 ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
| 12 | 11 | ex | ⊢ ( ( ⌊ ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
| 13 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 14 | df-ne | ⊢ ( ( ⌊ ‘ 𝐴 ) ≠ 𝐴 ↔ ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 15 | necom | ⊢ ( ( ⌊ ‘ 𝐴 ) ≠ 𝐴 ↔ 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) | |
| 16 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 17 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 18 | 16 17 | ltlend | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) < 𝐴 ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 19 | breq1 | ⊢ ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 ↔ ( ⌈ ‘ 𝐴 ) < 𝐴 ) ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 ↔ ( ⌈ ‘ 𝐴 ) < 𝐴 ) ) |
| 21 | ceilge | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ⌈ ‘ 𝐴 ) ) | |
| 22 | ceilcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℤ ) | |
| 23 | 22 | zred | ⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) ∈ ℝ ) |
| 24 | 17 23 | lenltd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ ( ⌈ ‘ 𝐴 ) ↔ ¬ ( ⌈ ‘ 𝐴 ) < 𝐴 ) ) |
| 25 | pm2.21 | ⊢ ( ¬ ( ⌈ ‘ 𝐴 ) < 𝐴 → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) | |
| 26 | 24 25 | biimtrdi | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ ( ⌈ ‘ 𝐴 ) → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) ) |
| 27 | 21 26 | mpd | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) → ( ( ⌈ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) |
| 29 | 20 28 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) |
| 30 | 29 | ex | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) < 𝐴 → 𝐴 ∈ ℤ ) ) ) |
| 31 | 30 | com23 | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) < 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
| 32 | 18 31 | sylbird | ⊢ ( 𝐴 ∈ ℝ → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≠ ( ⌊ ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
| 33 | 32 | expd | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( 𝐴 ≠ ( ⌊ ‘ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
| 34 | 33 | com3r | ⊢ ( 𝐴 ≠ ( ⌊ ‘ 𝐴 ) → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
| 35 | 15 34 | sylbi | ⊢ ( ( ⌊ ‘ 𝐴 ) ≠ 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
| 36 | 14 35 | sylbir | ⊢ ( ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) ) |
| 37 | 13 36 | mpdi | ⊢ ( ¬ ( ⌊ ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) ) |
| 38 | 12 37 | pm2.61i | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) ) |
| 39 | 3 38 | impbid2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( ⌊ ‘ 𝐴 ) = ( ⌈ ‘ 𝐴 ) ) ) |