This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fleqceilz | |- ( A e. RR -> ( A e. ZZ <-> ( |_ ` A ) = ( |^ ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flid | |- ( A e. ZZ -> ( |_ ` A ) = A ) |
|
| 2 | ceilid | |- ( A e. ZZ -> ( |^ ` A ) = A ) |
|
| 3 | 1 2 | eqtr4d | |- ( A e. ZZ -> ( |_ ` A ) = ( |^ ` A ) ) |
| 4 | eqeq1 | |- ( ( |_ ` A ) = A -> ( ( |_ ` A ) = ( |^ ` A ) <-> A = ( |^ ` A ) ) ) |
|
| 5 | 4 | adantr | |- ( ( ( |_ ` A ) = A /\ A e. RR ) -> ( ( |_ ` A ) = ( |^ ` A ) <-> A = ( |^ ` A ) ) ) |
| 6 | ceilidz | |- ( A e. RR -> ( A e. ZZ <-> ( |^ ` A ) = A ) ) |
|
| 7 | eqcom | |- ( ( |^ ` A ) = A <-> A = ( |^ ` A ) ) |
|
| 8 | 6 7 | bitrdi | |- ( A e. RR -> ( A e. ZZ <-> A = ( |^ ` A ) ) ) |
| 9 | 8 | biimprd | |- ( A e. RR -> ( A = ( |^ ` A ) -> A e. ZZ ) ) |
| 10 | 9 | adantl | |- ( ( ( |_ ` A ) = A /\ A e. RR ) -> ( A = ( |^ ` A ) -> A e. ZZ ) ) |
| 11 | 5 10 | sylbid | |- ( ( ( |_ ` A ) = A /\ A e. RR ) -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) |
| 12 | 11 | ex | |- ( ( |_ ` A ) = A -> ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
| 13 | flle | |- ( A e. RR -> ( |_ ` A ) <_ A ) |
|
| 14 | df-ne | |- ( ( |_ ` A ) =/= A <-> -. ( |_ ` A ) = A ) |
|
| 15 | necom | |- ( ( |_ ` A ) =/= A <-> A =/= ( |_ ` A ) ) |
|
| 16 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 17 | id | |- ( A e. RR -> A e. RR ) |
|
| 18 | 16 17 | ltlend | |- ( A e. RR -> ( ( |_ ` A ) < A <-> ( ( |_ ` A ) <_ A /\ A =/= ( |_ ` A ) ) ) ) |
| 19 | breq1 | |- ( ( |_ ` A ) = ( |^ ` A ) -> ( ( |_ ` A ) < A <-> ( |^ ` A ) < A ) ) |
|
| 20 | 19 | adantl | |- ( ( A e. RR /\ ( |_ ` A ) = ( |^ ` A ) ) -> ( ( |_ ` A ) < A <-> ( |^ ` A ) < A ) ) |
| 21 | ceilge | |- ( A e. RR -> A <_ ( |^ ` A ) ) |
|
| 22 | ceilcl | |- ( A e. RR -> ( |^ ` A ) e. ZZ ) |
|
| 23 | 22 | zred | |- ( A e. RR -> ( |^ ` A ) e. RR ) |
| 24 | 17 23 | lenltd | |- ( A e. RR -> ( A <_ ( |^ ` A ) <-> -. ( |^ ` A ) < A ) ) |
| 25 | pm2.21 | |- ( -. ( |^ ` A ) < A -> ( ( |^ ` A ) < A -> A e. ZZ ) ) |
|
| 26 | 24 25 | biimtrdi | |- ( A e. RR -> ( A <_ ( |^ ` A ) -> ( ( |^ ` A ) < A -> A e. ZZ ) ) ) |
| 27 | 21 26 | mpd | |- ( A e. RR -> ( ( |^ ` A ) < A -> A e. ZZ ) ) |
| 28 | 27 | adantr | |- ( ( A e. RR /\ ( |_ ` A ) = ( |^ ` A ) ) -> ( ( |^ ` A ) < A -> A e. ZZ ) ) |
| 29 | 20 28 | sylbid | |- ( ( A e. RR /\ ( |_ ` A ) = ( |^ ` A ) ) -> ( ( |_ ` A ) < A -> A e. ZZ ) ) |
| 30 | 29 | ex | |- ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> ( ( |_ ` A ) < A -> A e. ZZ ) ) ) |
| 31 | 30 | com23 | |- ( A e. RR -> ( ( |_ ` A ) < A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
| 32 | 18 31 | sylbird | |- ( A e. RR -> ( ( ( |_ ` A ) <_ A /\ A =/= ( |_ ` A ) ) -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
| 33 | 32 | expd | |- ( A e. RR -> ( ( |_ ` A ) <_ A -> ( A =/= ( |_ ` A ) -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
| 34 | 33 | com3r | |- ( A =/= ( |_ ` A ) -> ( A e. RR -> ( ( |_ ` A ) <_ A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
| 35 | 15 34 | sylbi | |- ( ( |_ ` A ) =/= A -> ( A e. RR -> ( ( |_ ` A ) <_ A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
| 36 | 14 35 | sylbir | |- ( -. ( |_ ` A ) = A -> ( A e. RR -> ( ( |_ ` A ) <_ A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
| 37 | 13 36 | mpdi | |- ( -. ( |_ ` A ) = A -> ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
| 38 | 12 37 | pm2.61i | |- ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) |
| 39 | 3 38 | impbid2 | |- ( A e. RR -> ( A e. ZZ <-> ( |_ ` A ) = ( |^ ` A ) ) ) |