This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| fldhmsubc.d | ⊢ 𝐷 = ( 𝑈 ∩ Field ) | ||
| fldhmsubc.f | ⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) | ||
| Assertion | fldc | ⊢ ( 𝑈 ∈ 𝑉 → ( ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ↾cat 𝐹 ) ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drhmsubc.c | ⊢ 𝐶 = ( 𝑈 ∩ DivRing ) | |
| 2 | drhmsubc.j | ⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 3 | fldhmsubc.d | ⊢ 𝐷 = ( 𝑈 ∩ Field ) | |
| 4 | fldhmsubc.f | ⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) | |
| 5 | fvexd | ⊢ ( 𝑈 ∈ 𝑉 → ( RingCat ‘ 𝑈 ) ∈ V ) | |
| 6 | ovex | ⊢ ( 𝑟 RingHom 𝑠 ) ∈ V | |
| 7 | 2 6 | fnmpoi | ⊢ 𝐽 Fn ( 𝐶 × 𝐶 ) |
| 8 | 7 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐽 Fn ( 𝐶 × 𝐶 ) ) |
| 9 | 4 6 | fnmpoi | ⊢ 𝐹 Fn ( 𝐷 × 𝐷 ) |
| 10 | 9 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐹 Fn ( 𝐷 × 𝐷 ) ) |
| 11 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ DivRing ) ∈ V ) | |
| 12 | 1 11 | eqeltrid | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ V ) |
| 13 | df-field | ⊢ Field = ( DivRing ∩ CRing ) | |
| 14 | inss1 | ⊢ ( DivRing ∩ CRing ) ⊆ DivRing | |
| 15 | 13 14 | eqsstri | ⊢ Field ⊆ DivRing |
| 16 | sslin | ⊢ ( Field ⊆ DivRing → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) | |
| 17 | 15 16 | mp1i | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
| 18 | 17 3 1 | 3sstr4g | ⊢ ( 𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶 ) |
| 19 | 5 8 10 12 18 | rescabs | ⊢ ( 𝑈 ∈ 𝑉 → ( ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ↾cat 𝐹 ) = ( ( RingCat ‘ 𝑈 ) ↾cat 𝐹 ) ) |
| 20 | 1 2 3 4 | fldcat | ⊢ ( 𝑈 ∈ 𝑉 → ( ( RingCat ‘ 𝑈 ) ↾cat 𝐹 ) ∈ Cat ) |
| 21 | 19 20 | eqeltrd | ⊢ ( 𝑈 ∈ 𝑉 → ( ( ( RingCat ‘ 𝑈 ) ↾cat 𝐽 ) ↾cat 𝐹 ) ∈ Cat ) |