This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drhmsubc.c | |- C = ( U i^i DivRing ) |
|
| drhmsubc.j | |- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
||
| fldhmsubc.d | |- D = ( U i^i Field ) |
||
| fldhmsubc.f | |- F = ( r e. D , s e. D |-> ( r RingHom s ) ) |
||
| Assertion | fldc | |- ( U e. V -> ( ( ( RingCat ` U ) |`cat J ) |`cat F ) e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drhmsubc.c | |- C = ( U i^i DivRing ) |
|
| 2 | drhmsubc.j | |- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
|
| 3 | fldhmsubc.d | |- D = ( U i^i Field ) |
|
| 4 | fldhmsubc.f | |- F = ( r e. D , s e. D |-> ( r RingHom s ) ) |
|
| 5 | fvexd | |- ( U e. V -> ( RingCat ` U ) e. _V ) |
|
| 6 | ovex | |- ( r RingHom s ) e. _V |
|
| 7 | 2 6 | fnmpoi | |- J Fn ( C X. C ) |
| 8 | 7 | a1i | |- ( U e. V -> J Fn ( C X. C ) ) |
| 9 | 4 6 | fnmpoi | |- F Fn ( D X. D ) |
| 10 | 9 | a1i | |- ( U e. V -> F Fn ( D X. D ) ) |
| 11 | inex1g | |- ( U e. V -> ( U i^i DivRing ) e. _V ) |
|
| 12 | 1 11 | eqeltrid | |- ( U e. V -> C e. _V ) |
| 13 | df-field | |- Field = ( DivRing i^i CRing ) |
|
| 14 | inss1 | |- ( DivRing i^i CRing ) C_ DivRing |
|
| 15 | 13 14 | eqsstri | |- Field C_ DivRing |
| 16 | sslin | |- ( Field C_ DivRing -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
|
| 17 | 15 16 | mp1i | |- ( U e. V -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
| 18 | 17 3 1 | 3sstr4g | |- ( U e. V -> D C_ C ) |
| 19 | 5 8 10 12 18 | rescabs | |- ( U e. V -> ( ( ( RingCat ` U ) |`cat J ) |`cat F ) = ( ( RingCat ` U ) |`cat F ) ) |
| 20 | 1 2 3 4 | fldcat | |- ( U e. V -> ( ( RingCat ` U ) |`cat F ) e. Cat ) |
| 21 | 19 20 | eqeltrd | |- ( U e. V -> ( ( ( RingCat ` U ) |`cat J ) |`cat F ) e. Cat ) |