This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fixun | ⊢ Fix ( 𝐴 ∪ 𝐵 ) = ( Fix 𝐴 ∪ Fix 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ I ) = ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) ) | |
| 2 | 1 | dmeqi | ⊢ dom ( ( 𝐴 ∪ 𝐵 ) ∩ I ) = dom ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) ) |
| 3 | dmun | ⊢ dom ( ( 𝐴 ∩ I ) ∪ ( 𝐵 ∩ I ) ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) ) | |
| 4 | 2 3 | eqtri | ⊢ dom ( ( 𝐴 ∪ 𝐵 ) ∩ I ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) ) |
| 5 | df-fix | ⊢ Fix ( 𝐴 ∪ 𝐵 ) = dom ( ( 𝐴 ∪ 𝐵 ) ∩ I ) | |
| 6 | df-fix | ⊢ Fix 𝐴 = dom ( 𝐴 ∩ I ) | |
| 7 | df-fix | ⊢ Fix 𝐵 = dom ( 𝐵 ∩ I ) | |
| 8 | 6 7 | uneq12i | ⊢ ( Fix 𝐴 ∪ Fix 𝐵 ) = ( dom ( 𝐴 ∩ I ) ∪ dom ( 𝐵 ∩ I ) ) |
| 9 | 4 5 8 | 3eqtr4i | ⊢ Fix ( 𝐴 ∪ 𝐵 ) = ( Fix 𝐴 ∪ Fix 𝐵 ) |