This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fixun | |- Fix ( A u. B ) = ( Fix A u. Fix B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir | |- ( ( A u. B ) i^i _I ) = ( ( A i^i _I ) u. ( B i^i _I ) ) |
|
| 2 | 1 | dmeqi | |- dom ( ( A u. B ) i^i _I ) = dom ( ( A i^i _I ) u. ( B i^i _I ) ) |
| 3 | dmun | |- dom ( ( A i^i _I ) u. ( B i^i _I ) ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) ) |
|
| 4 | 2 3 | eqtri | |- dom ( ( A u. B ) i^i _I ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) ) |
| 5 | df-fix | |- Fix ( A u. B ) = dom ( ( A u. B ) i^i _I ) |
|
| 6 | df-fix | |- Fix A = dom ( A i^i _I ) |
|
| 7 | df-fix | |- Fix B = dom ( B i^i _I ) |
|
| 8 | 6 7 | uneq12i | |- ( Fix A u. Fix B ) = ( dom ( A i^i _I ) u. dom ( B i^i _I ) ) |
| 9 | 4 5 8 | 3eqtr4i | |- Fix ( A u. B ) = ( Fix A u. Fix B ) |