This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiprc | |- Fin e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnex | |- { x | E. y x = { y } } e/ _V |
|
| 2 | snfi | |- { y } e. Fin |
|
| 3 | eleq1 | |- ( x = { y } -> ( x e. Fin <-> { y } e. Fin ) ) |
|
| 4 | 2 3 | mpbiri | |- ( x = { y } -> x e. Fin ) |
| 5 | 4 | exlimiv | |- ( E. y x = { y } -> x e. Fin ) |
| 6 | 5 | abssi | |- { x | E. y x = { y } } C_ Fin |
| 7 | ssexg | |- ( ( { x | E. y x = { y } } C_ Fin /\ Fin e. _V ) -> { x | E. y x = { y } } e. _V ) |
|
| 8 | 6 7 | mpan | |- ( Fin e. _V -> { x | E. y x = { y } } e. _V ) |
| 9 | 8 | con3i | |- ( -. { x | E. y x = { y } } e. _V -> -. Fin e. _V ) |
| 10 | df-nel | |- ( { x | E. y x = { y } } e/ _V <-> -. { x | E. y x = { y } } e. _V ) |
|
| 11 | df-nel | |- ( Fin e/ _V <-> -. Fin e. _V ) |
|
| 12 | 9 10 11 | 3imtr4i | |- ( { x | E. y x = { y } } e/ _V -> Fin e/ _V ) |
| 13 | 1 12 | ax-mp | |- Fin e/ _V |