This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin71num
Metamath Proof Explorer
Description: A well-orderable set is VII-finite iff it is I-finite. Thus, even without
choice, on the class of well-orderable sets all eight definitions of
finite set coincide. (Contributed by Mario Carneiro , 18-May-2015)
Ref
Expression
Assertion
fin71num
⊢ A ∈ dom ⁡ card → A ∈ Fin VII ↔ A ∈ Fin
Proof
Step
Hyp
Ref
Expression
1
isfin7-2
⊢ A ∈ dom ⁡ card → A ∈ Fin VII ↔ A ∈ dom ⁡ card → A ∈ Fin
2
biimt
⊢ A ∈ dom ⁡ card → A ∈ Fin ↔ A ∈ dom ⁡ card → A ∈ Fin
3
1 2
bitr4d
⊢ A ∈ dom ⁡ card → A ∈ Fin VII ↔ A ∈ Fin