This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007) (Revised by Thierry Arnoux, 17-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fovcld.1 | ⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) | |
| Assertion | fovcld | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcld.1 | ⊢ ( 𝜑 → 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ) | |
| 2 | 3simpc | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) | |
| 3 | ffnov | ⊢ ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ↔ ( 𝐹 Fn ( 𝑅 × 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) ) | |
| 4 | 3 | simprbi | ⊢ ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ) |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 ↔ ( 𝐴 𝐹 𝑦 ) ∈ 𝐶 ) ) |
| 9 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) ∈ 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) ) |
| 11 | 8 10 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝐹 𝑦 ) ∈ 𝐶 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) ) |
| 12 | 2 6 11 | sylc | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐶 ) |