This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function maps to a class to which all values belong. This version of ffnfv uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ffnfvf.1 | |- F/_ x A |
|
| ffnfvf.2 | |- F/_ x B |
||
| ffnfvf.3 | |- F/_ x F |
||
| Assertion | ffnfvf | |- ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfvf.1 | |- F/_ x A |
|
| 2 | ffnfvf.2 | |- F/_ x B |
|
| 3 | ffnfvf.3 | |- F/_ x F |
|
| 4 | ffnfv | |- ( F : A --> B <-> ( F Fn A /\ A. z e. A ( F ` z ) e. B ) ) |
|
| 5 | nfcv | |- F/_ z A |
|
| 6 | nfcv | |- F/_ x z |
|
| 7 | 3 6 | nffv | |- F/_ x ( F ` z ) |
| 8 | 7 2 | nfel | |- F/ x ( F ` z ) e. B |
| 9 | nfv | |- F/ z ( F ` x ) e. B |
|
| 10 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 11 | 10 | eleq1d | |- ( z = x -> ( ( F ` z ) e. B <-> ( F ` x ) e. B ) ) |
| 12 | 5 1 8 9 11 | cbvralfw | |- ( A. z e. A ( F ` z ) e. B <-> A. x e. A ( F ` x ) e. B ) |
| 13 | 12 | anbi2i | |- ( ( F Fn A /\ A. z e. A ( F ` z ) e. B ) <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |
| 14 | 4 13 | bitri | |- ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |