This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconst4 | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst3 | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝐹 “ { 𝐵 } ) ⊆ dom 𝐹 | |
| 3 | fndm | ⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) | |
| 4 | 2 3 | sseqtrid | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) ⊆ 𝐴 ) |
| 5 | 4 | biantrurd | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ↔ ( ( ◡ 𝐹 “ { 𝐵 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) ) |
| 6 | eqss | ⊢ ( ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ↔ ( ( ◡ 𝐹 “ { 𝐵 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) | |
| 7 | 5 6 | bitr4di | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ↔ ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ) ) |
| 8 | 7 | pm5.32i | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ↔ ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ) ) |
| 9 | 1 8 | bitri | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ) ) |