This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconst4 | |- ( F : A --> { B } <-> ( F Fn A /\ ( `' F " { B } ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst3 | |- ( F : A --> { B } <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) |
|
| 2 | cnvimass | |- ( `' F " { B } ) C_ dom F |
|
| 3 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 4 | 2 3 | sseqtrid | |- ( F Fn A -> ( `' F " { B } ) C_ A ) |
| 5 | 4 | biantrurd | |- ( F Fn A -> ( A C_ ( `' F " { B } ) <-> ( ( `' F " { B } ) C_ A /\ A C_ ( `' F " { B } ) ) ) ) |
| 6 | eqss | |- ( ( `' F " { B } ) = A <-> ( ( `' F " { B } ) C_ A /\ A C_ ( `' F " { B } ) ) ) |
|
| 7 | 5 6 | bitr4di | |- ( F Fn A -> ( A C_ ( `' F " { B } ) <-> ( `' F " { B } ) = A ) ) |
| 8 | 7 | pm5.32i | |- ( ( F Fn A /\ A C_ ( `' F " { B } ) ) <-> ( F Fn A /\ ( `' F " { B } ) = A ) ) |
| 9 | 1 8 | bitri | |- ( F : A --> { B } <-> ( F Fn A /\ ( `' F " { B } ) = A ) ) |