This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2fvcoidd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2fvcoidd.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | ||
| 2fvcoidd.i | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ) | ||
| Assertion | 2fvcoidd | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fvcoidd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 2fvcoidd.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | |
| 3 | 2fvcoidd.i | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ) | |
| 4 | fcompt | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 5 | 2 1 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 6 | 2fveq3 | ⊢ ( 𝑎 = 𝑥 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 7 | id | ⊢ ( 𝑎 = 𝑥 → 𝑎 = 𝑥 ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ↔ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) ) |
| 9 | 8 | rspccv | ⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 → ( 𝑥 ∈ 𝐴 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) ) |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 12 | 11 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ) |
| 13 | mptresid | ⊢ ( I ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) | |
| 14 | 12 13 | eqtr4di | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( I ↾ 𝐴 ) ) |
| 15 | 5 14 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |