This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An application is injective if a retraction exists. Proposition 8 of BourbakiEns p. E.II.18. (Contributed by FL, 11-Nov-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcof1 | |- ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) -> F : A -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) -> F : A --> B ) |
|
| 2 | simprr | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( F ` x ) = ( F ` y ) ) |
|
| 3 | 2 | fveq2d | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( R ` ( F ` x ) ) = ( R ` ( F ` y ) ) ) |
| 4 | simpll | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> F : A --> B ) |
|
| 5 | simprll | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> x e. A ) |
|
| 6 | fvco3 | |- ( ( F : A --> B /\ x e. A ) -> ( ( R o. F ) ` x ) = ( R ` ( F ` x ) ) ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( R o. F ) ` x ) = ( R ` ( F ` x ) ) ) |
| 8 | simprlr | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> y e. A ) |
|
| 9 | fvco3 | |- ( ( F : A --> B /\ y e. A ) -> ( ( R o. F ) ` y ) = ( R ` ( F ` y ) ) ) |
|
| 10 | 4 8 9 | syl2anc | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( R o. F ) ` y ) = ( R ` ( F ` y ) ) ) |
| 11 | 3 7 10 | 3eqtr4d | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( R o. F ) ` x ) = ( ( R o. F ) ` y ) ) |
| 12 | simplr | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( R o. F ) = ( _I |` A ) ) |
|
| 13 | 12 | fveq1d | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( R o. F ) ` x ) = ( ( _I |` A ) ` x ) ) |
| 14 | 12 | fveq1d | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( R o. F ) ` y ) = ( ( _I |` A ) ` y ) ) |
| 15 | 11 13 14 | 3eqtr3d | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( _I |` A ) ` x ) = ( ( _I |` A ) ` y ) ) |
| 16 | fvresi | |- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
|
| 17 | 5 16 | syl | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( _I |` A ) ` x ) = x ) |
| 18 | fvresi | |- ( y e. A -> ( ( _I |` A ) ` y ) = y ) |
|
| 19 | 8 18 | syl | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( _I |` A ) ` y ) = y ) |
| 20 | 15 17 19 | 3eqtr3d | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> x = y ) |
| 21 | 20 | expr | |- ( ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 22 | 21 | ralrimivva | |- ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) -> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 23 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 24 | 1 22 23 | sylanbrc | |- ( ( F : A --> B /\ ( R o. F ) = ( _I |` A ) ) -> F : A -1-1-> B ) |