This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function into NN0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcdmnn0fsupp | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( `' F " NN ) e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | |- 0 e. _V |
|
| 2 | ffsuppbi | |- ( ( I e. V /\ 0 e. _V ) -> ( F : I --> NN0 -> ( F finSupp 0 <-> ( `' F " ( NN0 \ { 0 } ) ) e. Fin ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( I e. V -> ( F : I --> NN0 -> ( F finSupp 0 <-> ( `' F " ( NN0 \ { 0 } ) ) e. Fin ) ) ) |
| 4 | 3 | imp | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( `' F " ( NN0 \ { 0 } ) ) e. Fin ) ) |
| 5 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
| 6 | 5 | imaeq2i | |- ( `' F " NN ) = ( `' F " ( NN0 \ { 0 } ) ) |
| 7 | 6 | eleq1i | |- ( ( `' F " NN ) e. Fin <-> ( `' F " ( NN0 \ { 0 } ) ) e. Fin ) |
| 8 | 4 7 | bitr4di | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( `' F " NN ) e. Fin ) ) |