This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the falling factorial when N = 0 . (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfac0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 FallFac 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 2 | fallrisefac | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 FallFac 0 ) = ( ( - 1 ↑ 0 ) · ( - 𝐴 RiseFac 0 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 FallFac 0 ) = ( ( - 1 ↑ 0 ) · ( - 𝐴 RiseFac 0 ) ) ) |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | exp0 | ⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝐴 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
| 7 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 8 | risefac0 | ⊢ ( - 𝐴 ∈ ℂ → ( - 𝐴 RiseFac 0 ) = 1 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 RiseFac 0 ) = 1 ) |
| 10 | 6 9 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( - 1 ↑ 0 ) · ( - 𝐴 RiseFac 0 ) ) = ( 1 · 1 ) ) |
| 11 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( - 1 ↑ 0 ) · ( - 𝐴 RiseFac 0 ) ) = 1 ) |
| 13 | 3 12 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 FallFac 0 ) = 1 ) |