This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the falling factorial when N = 0 . (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfac0 | |- ( A e. CC -> ( A FallFac 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 | |- 0 e. NN0 |
|
| 2 | fallrisefac | |- ( ( A e. CC /\ 0 e. NN0 ) -> ( A FallFac 0 ) = ( ( -u 1 ^ 0 ) x. ( -u A RiseFac 0 ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. CC -> ( A FallFac 0 ) = ( ( -u 1 ^ 0 ) x. ( -u A RiseFac 0 ) ) ) |
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | exp0 | |- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
|
| 6 | 4 5 | mp1i | |- ( A e. CC -> ( -u 1 ^ 0 ) = 1 ) |
| 7 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 8 | risefac0 | |- ( -u A e. CC -> ( -u A RiseFac 0 ) = 1 ) |
|
| 9 | 7 8 | syl | |- ( A e. CC -> ( -u A RiseFac 0 ) = 1 ) |
| 10 | 6 9 | oveq12d | |- ( A e. CC -> ( ( -u 1 ^ 0 ) x. ( -u A RiseFac 0 ) ) = ( 1 x. 1 ) ) |
| 11 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 12 | 10 11 | eqtrdi | |- ( A e. CC -> ( ( -u 1 ^ 0 ) x. ( -u A RiseFac 0 ) ) = 1 ) |
| 13 | 3 12 | eqtrd | |- ( A e. CC -> ( A FallFac 0 ) = 1 ) |