This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1od.1 | |- F = ( x e. A |-> C ) |
|
| f1od.2 | |- ( ( ph /\ x e. A ) -> C e. W ) |
||
| f1od.3 | |- ( ( ph /\ y e. B ) -> D e. X ) |
||
| f1od.4 | |- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
||
| Assertion | f1ocnvd | |- ( ph -> ( F : A -1-1-onto-> B /\ `' F = ( y e. B |-> D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1od.1 | |- F = ( x e. A |-> C ) |
|
| 2 | f1od.2 | |- ( ( ph /\ x e. A ) -> C e. W ) |
|
| 3 | f1od.3 | |- ( ( ph /\ y e. B ) -> D e. X ) |
|
| 4 | f1od.4 | |- ( ph -> ( ( x e. A /\ y = C ) <-> ( y e. B /\ x = D ) ) ) |
|
| 5 | 2 | ralrimiva | |- ( ph -> A. x e. A C e. W ) |
| 6 | 1 | fnmpt | |- ( A. x e. A C e. W -> F Fn A ) |
| 7 | 5 6 | syl | |- ( ph -> F Fn A ) |
| 8 | 3 | ralrimiva | |- ( ph -> A. y e. B D e. X ) |
| 9 | eqid | |- ( y e. B |-> D ) = ( y e. B |-> D ) |
|
| 10 | 9 | fnmpt | |- ( A. y e. B D e. X -> ( y e. B |-> D ) Fn B ) |
| 11 | 8 10 | syl | |- ( ph -> ( y e. B |-> D ) Fn B ) |
| 12 | 4 | opabbidv | |- ( ph -> { <. y , x >. | ( x e. A /\ y = C ) } = { <. y , x >. | ( y e. B /\ x = D ) } ) |
| 13 | df-mpt | |- ( x e. A |-> C ) = { <. x , y >. | ( x e. A /\ y = C ) } |
|
| 14 | 1 13 | eqtri | |- F = { <. x , y >. | ( x e. A /\ y = C ) } |
| 15 | 14 | cnveqi | |- `' F = `' { <. x , y >. | ( x e. A /\ y = C ) } |
| 16 | cnvopab | |- `' { <. x , y >. | ( x e. A /\ y = C ) } = { <. y , x >. | ( x e. A /\ y = C ) } |
|
| 17 | 15 16 | eqtri | |- `' F = { <. y , x >. | ( x e. A /\ y = C ) } |
| 18 | df-mpt | |- ( y e. B |-> D ) = { <. y , x >. | ( y e. B /\ x = D ) } |
|
| 19 | 12 17 18 | 3eqtr4g | |- ( ph -> `' F = ( y e. B |-> D ) ) |
| 20 | 19 | fneq1d | |- ( ph -> ( `' F Fn B <-> ( y e. B |-> D ) Fn B ) ) |
| 21 | 11 20 | mpbird | |- ( ph -> `' F Fn B ) |
| 22 | dff1o4 | |- ( F : A -1-1-onto-> B <-> ( F Fn A /\ `' F Fn B ) ) |
|
| 23 | 7 21 22 | sylanbrc | |- ( ph -> F : A -1-1-onto-> B ) |
| 24 | 23 19 | jca | |- ( ph -> ( F : A -1-1-onto-> B /\ `' F = ( y e. B |-> D ) ) ) |