This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008) (Proof shortened by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oabexg.1 | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } | |
| Assertion | f1oabexg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oabexg.1 | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
| 3 | elex | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) | |
| 4 | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 5 | 4 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 6 | simpl | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
| 7 | simpr | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) | |
| 8 | 5 6 7 | fabexd | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝜑 ) } ∈ V ) |
| 9 | 1 8 | eqeltrid | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝐹 ∈ V ) |
| 10 | 2 3 9 | syl2an | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝐹 ∈ V ) |