This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi . (Contributed by AV, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1dmvrnfibi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnfi | ⊢ ( 𝐹 ∈ Fin → ran 𝐹 ∈ Fin ) | |
| 2 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ ran 𝐹 ∈ Fin ) → ran 𝐹 ∈ Fin ) | |
| 3 | f1dm | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 4 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
| 5 | eleq1 | ⊢ ( 𝐴 = dom 𝐹 → ( 𝐴 ∈ 𝑉 ↔ dom 𝐹 ∈ 𝑉 ) ) | |
| 6 | f1oeq2 | ⊢ ( 𝐴 = dom 𝐹 → ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ↔ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) | |
| 7 | 5 6 | anbi12d | ⊢ ( 𝐴 = dom 𝐹 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) ↔ ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) ) |
| 8 | 7 | eqcoms | ⊢ ( dom 𝐹 = 𝐴 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) ↔ ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) ) |
| 9 | 8 | biimpd | ⊢ ( dom 𝐹 = 𝐴 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) → ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) ) |
| 10 | 9 | expcomd | ⊢ ( dom 𝐹 = 𝐴 → ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 → ( 𝐴 ∈ 𝑉 → ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) ) ) |
| 11 | 3 4 10 | sylc | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐴 ∈ 𝑉 → ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) ) |
| 12 | 11 | impcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ ran 𝐹 ∈ Fin ) → ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) ) |
| 14 | f1oeng | ⊢ ( ( dom 𝐹 ∈ 𝑉 ∧ 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) → dom 𝐹 ≈ ran 𝐹 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ ran 𝐹 ∈ Fin ) → dom 𝐹 ≈ ran 𝐹 ) |
| 16 | enfii | ⊢ ( ( ran 𝐹 ∈ Fin ∧ dom 𝐹 ≈ ran 𝐹 ) → dom 𝐹 ∈ Fin ) | |
| 17 | 2 15 16 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ ran 𝐹 ∈ Fin ) → dom 𝐹 ∈ Fin ) |
| 18 | f1fun | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun 𝐹 ) | |
| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ ran 𝐹 ∈ Fin ) → Fun 𝐹 ) |
| 20 | fundmfibi | ⊢ ( Fun 𝐹 → ( 𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ ran 𝐹 ∈ Fin ) → ( 𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin ) ) |
| 22 | 17 21 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ ran 𝐹 ∈ Fin ) → 𝐹 ∈ Fin ) |
| 23 | 22 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ∈ Fin → 𝐹 ∈ Fin ) ) |
| 24 | 1 23 | impbid2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) |