This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi . (Contributed by AV, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1dmvrnfibi | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnfi | |- ( F e. Fin -> ran F e. Fin ) |
|
| 2 | simpr | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> ran F e. Fin ) |
|
| 3 | f1dm | |- ( F : A -1-1-> B -> dom F = A ) |
|
| 4 | f1f1orn | |- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
|
| 5 | eleq1 | |- ( A = dom F -> ( A e. V <-> dom F e. V ) ) |
|
| 6 | f1oeq2 | |- ( A = dom F -> ( F : A -1-1-onto-> ran F <-> F : dom F -1-1-onto-> ran F ) ) |
|
| 7 | 5 6 | anbi12d | |- ( A = dom F -> ( ( A e. V /\ F : A -1-1-onto-> ran F ) <-> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
| 8 | 7 | eqcoms | |- ( dom F = A -> ( ( A e. V /\ F : A -1-1-onto-> ran F ) <-> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
| 9 | 8 | biimpd | |- ( dom F = A -> ( ( A e. V /\ F : A -1-1-onto-> ran F ) -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
| 10 | 9 | expcomd | |- ( dom F = A -> ( F : A -1-1-onto-> ran F -> ( A e. V -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) ) |
| 11 | 3 4 10 | sylc | |- ( F : A -1-1-> B -> ( A e. V -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
| 12 | 11 | impcom | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) |
| 13 | 12 | adantr | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) |
| 14 | f1oeng | |- ( ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) -> dom F ~~ ran F ) |
|
| 15 | 13 14 | syl | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> dom F ~~ ran F ) |
| 16 | enfii | |- ( ( ran F e. Fin /\ dom F ~~ ran F ) -> dom F e. Fin ) |
|
| 17 | 2 15 16 | syl2anc | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> dom F e. Fin ) |
| 18 | f1fun | |- ( F : A -1-1-> B -> Fun F ) |
|
| 19 | 18 | ad2antlr | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> Fun F ) |
| 20 | fundmfibi | |- ( Fun F -> ( F e. Fin <-> dom F e. Fin ) ) |
|
| 21 | 19 20 | syl | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> ( F e. Fin <-> dom F e. Fin ) ) |
| 22 | 17 21 | mpbird | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> F e. Fin ) |
| 23 | 22 | ex | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( ran F e. Fin -> F e. Fin ) ) |
| 24 | 1 23 | impbid2 | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) |