This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exse2 | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 Se 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) } | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 2 3 | breldm | ⊢ ( 𝑦 𝑅 𝑥 → 𝑦 ∈ dom 𝑅 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) → 𝑦 ∈ dom 𝑅 ) |
| 6 | 5 | abssi | ⊢ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑥 ) } ⊆ dom 𝑅 |
| 7 | 1 6 | eqsstri | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ dom 𝑅 |
| 8 | dmexg | ⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) | |
| 9 | ssexg | ⊢ ( ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V ) → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( 𝑅 ∈ 𝑉 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 11 | 10 | ralrimivw | ⊢ ( 𝑅 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 12 | df-se | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 Se 𝐴 ) |