This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exse2 | |- ( R e. V -> R Se A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { y e. A | y R x } = { y | ( y e. A /\ y R x ) } |
|
| 2 | vex | |- y e. _V |
|
| 3 | vex | |- x e. _V |
|
| 4 | 2 3 | breldm | |- ( y R x -> y e. dom R ) |
| 5 | 4 | adantl | |- ( ( y e. A /\ y R x ) -> y e. dom R ) |
| 6 | 5 | abssi | |- { y | ( y e. A /\ y R x ) } C_ dom R |
| 7 | 1 6 | eqsstri | |- { y e. A | y R x } C_ dom R |
| 8 | dmexg | |- ( R e. V -> dom R e. _V ) |
|
| 9 | ssexg | |- ( ( { y e. A | y R x } C_ dom R /\ dom R e. _V ) -> { y e. A | y R x } e. _V ) |
|
| 10 | 7 8 9 | sylancr | |- ( R e. V -> { y e. A | y R x } e. _V ) |
| 11 | 10 | ralrimivw | |- ( R e. V -> A. x e. A { y e. A | y R x } e. _V ) |
| 12 | df-se | |- ( R Se A <-> A. x e. A { y e. A | y R x } e. _V ) |
|
| 13 | 11 12 | sylibr | |- ( R e. V -> R Se A ) |