This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is an element of the set of subsets with two elements in a set, an unordered pair of sets is in the set. (Contributed by Alexander van der Vekens, 12-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exprelprel | |- ( E. p e. { e e. ~P V | ( # ` e ) = 2 } p e. X -> E. v e. V E. w e. V { v , w } e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elss2prb | |- ( p e. { e e. ~P V | ( # ` e ) = 2 } <-> E. v e. V E. w e. V ( v =/= w /\ p = { v , w } ) ) |
|
| 2 | eleq1 | |- ( p = { v , w } -> ( p e. X <-> { v , w } e. X ) ) |
|
| 3 | 2 | adantl | |- ( ( v =/= w /\ p = { v , w } ) -> ( p e. X <-> { v , w } e. X ) ) |
| 4 | 3 | biimpcd | |- ( p e. X -> ( ( v =/= w /\ p = { v , w } ) -> { v , w } e. X ) ) |
| 5 | 4 | reximdv | |- ( p e. X -> ( E. w e. V ( v =/= w /\ p = { v , w } ) -> E. w e. V { v , w } e. X ) ) |
| 6 | 5 | reximdv | |- ( p e. X -> ( E. v e. V E. w e. V ( v =/= w /\ p = { v , w } ) -> E. v e. V E. w e. V { v , w } e. X ) ) |
| 7 | 6 | com12 | |- ( E. v e. V E. w e. V ( v =/= w /\ p = { v , w } ) -> ( p e. X -> E. v e. V E. w e. V { v , w } e. X ) ) |
| 8 | 1 7 | sylbi | |- ( p e. { e e. ~P V | ( # ` e ) = 2 } -> ( p e. X -> E. v e. V E. w e. V { v , w } e. X ) ) |
| 9 | 8 | rexlimiv | |- ( E. p e. { e e. ~P V | ( # ` e ) = 2 } p e. X -> E. v e. V E. w e. V { v , w } e. X ) |