This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-exp . (Contributed by AV, 4-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-exp | ⊢ ( ( 5 ↑ 2 ) = ; 2 5 ∧ ( - 3 ↑ - 2 ) = ( 1 / 9 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 2 | 1 | oveq1i | ⊢ ( 5 ↑ 2 ) = ( ( 4 + 1 ) ↑ 2 ) |
| 3 | 4cn | ⊢ 4 ∈ ℂ | |
| 4 | binom21 | ⊢ ( 4 ∈ ℂ → ( ( 4 + 1 ) ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( 4 + 1 ) ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) |
| 6 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 8 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 9 | sq4e2t8 | ⊢ ( 4 ↑ 2 ) = ( 2 · 8 ) | |
| 10 | 8cn | ⊢ 8 ∈ ℂ | |
| 11 | 2cn | ⊢ 2 ∈ ℂ | |
| 12 | 8t2e16 | ⊢ ( 8 · 2 ) = ; 1 6 | |
| 13 | 10 11 12 | mulcomli | ⊢ ( 2 · 8 ) = ; 1 6 |
| 14 | 9 13 | eqtri | ⊢ ( 4 ↑ 2 ) = ; 1 6 |
| 15 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
| 16 | 3 11 15 | mulcomli | ⊢ ( 2 · 4 ) = 8 |
| 17 | 14 16 | oveq12i | ⊢ ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) = ( ; 1 6 + 8 ) |
| 18 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 19 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 20 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 21 | eqid | ⊢ ; 1 6 = ; 1 6 | |
| 22 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 23 | 6cn | ⊢ 6 ∈ ℂ | |
| 24 | 8p6e14 | ⊢ ( 8 + 6 ) = ; 1 4 | |
| 25 | 10 23 24 | addcomli | ⊢ ( 6 + 8 ) = ; 1 4 |
| 26 | 18 19 20 21 22 7 25 | decaddci | ⊢ ( ; 1 6 + 8 ) = ; 2 4 |
| 27 | 17 26 | eqtri | ⊢ ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) = ; 2 4 |
| 28 | 6 7 8 27 | decsuc | ⊢ ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) = ; 2 5 |
| 29 | 5 28 | eqtri | ⊢ ( ( 4 + 1 ) ↑ 2 ) = ; 2 5 |
| 30 | 2 29 | eqtri | ⊢ ( 5 ↑ 2 ) = ; 2 5 |
| 31 | 3cn | ⊢ 3 ∈ ℂ | |
| 32 | 31 | negcli | ⊢ - 3 ∈ ℂ |
| 33 | expneg | ⊢ ( ( - 3 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( - 3 ↑ - 2 ) = ( 1 / ( - 3 ↑ 2 ) ) ) | |
| 34 | 32 6 33 | mp2an | ⊢ ( - 3 ↑ - 2 ) = ( 1 / ( - 3 ↑ 2 ) ) |
| 35 | sqneg | ⊢ ( 3 ∈ ℂ → ( - 3 ↑ 2 ) = ( 3 ↑ 2 ) ) | |
| 36 | 31 35 | ax-mp | ⊢ ( - 3 ↑ 2 ) = ( 3 ↑ 2 ) |
| 37 | sq3 | ⊢ ( 3 ↑ 2 ) = 9 | |
| 38 | 36 37 | eqtri | ⊢ ( - 3 ↑ 2 ) = 9 |
| 39 | 38 | oveq2i | ⊢ ( 1 / ( - 3 ↑ 2 ) ) = ( 1 / 9 ) |
| 40 | 34 39 | eqtri | ⊢ ( - 3 ↑ - 2 ) = ( 1 / 9 ) |
| 41 | 30 40 | pm3.2i | ⊢ ( ( 5 ↑ 2 ) = ; 2 5 ∧ ( - 3 ↑ - 2 ) = ( 1 / 9 ) ) |