This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of binom2 where B = 1 . (Contributed by Scott Fenton, 11-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom21 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · 𝐴 ) ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | binom2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 ↑ 2 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 ↑ 2 ) ) ) |
| 4 | mulrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 · 1 ) ) = ( 2 · 𝐴 ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 1 ) ) ) = ( ( 𝐴 ↑ 2 ) + ( 2 · 𝐴 ) ) ) |
| 7 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 1 ↑ 2 ) = 1 ) |
| 9 | 6 8 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 1 ) ) ) + ( 1 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · 𝐴 ) ) + 1 ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · 𝐴 ) ) + 1 ) ) |