This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ewlksfval.i | |- I = ( iEdg ` G ) |
|
| Assertion | ewlkinedg | |- ( ( F e. ( G EdgWalks S ) /\ K e. ( 1 ..^ ( # ` F ) ) ) -> S <_ ( # ` ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | ewlkprop | |- ( F e. ( G EdgWalks S ) -> ( ( G e. _V /\ S e. NN0* ) /\ F e. Word dom I /\ A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) |
| 3 | fvoveq1 | |- ( k = K -> ( F ` ( k - 1 ) ) = ( F ` ( K - 1 ) ) ) |
|
| 4 | 3 | fveq2d | |- ( k = K -> ( I ` ( F ` ( k - 1 ) ) ) = ( I ` ( F ` ( K - 1 ) ) ) ) |
| 5 | 2fveq3 | |- ( k = K -> ( I ` ( F ` k ) ) = ( I ` ( F ` K ) ) ) |
|
| 6 | 4 5 | ineq12d | |- ( k = K -> ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) = ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) |
| 7 | 6 | fveq2d | |- ( k = K -> ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) = ( # ` ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) ) |
| 8 | 7 | breq2d | |- ( k = K -> ( S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) <-> S <_ ( # ` ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) ) ) |
| 9 | 8 | rspccv | |- ( A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) -> ( K e. ( 1 ..^ ( # ` F ) ) -> S <_ ( # ` ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) ) ) |
| 10 | 9 | 3ad2ant3 | |- ( ( ( G e. _V /\ S e. NN0* ) /\ F e. Word dom I /\ A. k e. ( 1 ..^ ( # ` F ) ) S <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) -> ( K e. ( 1 ..^ ( # ` F ) ) -> S <_ ( # ` ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) ) ) |
| 11 | 2 10 | syl | |- ( F e. ( G EdgWalks S ) -> ( K e. ( 1 ..^ ( # ` F ) ) -> S <_ ( # ` ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) ) ) |
| 12 | 11 | imp | |- ( ( F e. ( G EdgWalks S ) /\ K e. ( 1 ..^ ( # ` F ) ) ) -> S <_ ( # ` ( ( I ` ( F ` ( K - 1 ) ) ) i^i ( I ` ( F ` K ) ) ) ) ) |