This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfr2w when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euxfr2.1 | |- A e. _V |
|
| euxfr2.2 | |- E* y x = A |
||
| Assertion | euxfr2 | |- ( E! x E. y ( x = A /\ ph ) <-> E! y ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfr2.1 | |- A e. _V |
|
| 2 | euxfr2.2 | |- E* y x = A |
|
| 3 | 2euswap | |- ( A. x E* y ( x = A /\ ph ) -> ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) ) |
|
| 4 | 2 | moani | |- E* y ( ph /\ x = A ) |
| 5 | ancom | |- ( ( ph /\ x = A ) <-> ( x = A /\ ph ) ) |
|
| 6 | 5 | mobii | |- ( E* y ( ph /\ x = A ) <-> E* y ( x = A /\ ph ) ) |
| 7 | 4 6 | mpbi | |- E* y ( x = A /\ ph ) |
| 8 | 3 7 | mpg | |- ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) |
| 9 | 2euswap | |- ( A. y E* x ( x = A /\ ph ) -> ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) ) |
|
| 10 | moeq | |- E* x x = A |
|
| 11 | 10 | moani | |- E* x ( ph /\ x = A ) |
| 12 | 5 | mobii | |- ( E* x ( ph /\ x = A ) <-> E* x ( x = A /\ ph ) ) |
| 13 | 11 12 | mpbi | |- E* x ( x = A /\ ph ) |
| 14 | 9 13 | mpg | |- ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) |
| 15 | 8 14 | impbii | |- ( E! x E. y ( x = A /\ ph ) <-> E! y E. x ( x = A /\ ph ) ) |
| 16 | biidd | |- ( x = A -> ( ph <-> ph ) ) |
|
| 17 | 1 16 | ceqsexv | |- ( E. x ( x = A /\ ph ) <-> ph ) |
| 18 | 17 | eubii | |- ( E! y E. x ( x = A /\ ph ) <-> E! y ph ) |
| 19 | 15 18 | bitri | |- ( E! x E. y ( x = A /\ ph ) <-> E! y ph ) |