This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Even if x is free in A , it is effectively bound when A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010) (Revised by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusvnf | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 3 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 | |
| 4 | 3 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 5 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) | |
| 6 | 5 | eqeq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝐴 ↔ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
| 7 | 2 4 6 | spcgf | ⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
| 8 | 7 | elv | ⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 10 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐴 | |
| 11 | 10 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
| 12 | csbeq1a | ⊢ ( 𝑥 = 𝑤 → 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝑥 = 𝑤 → ( 𝑦 = 𝐴 ↔ 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 14 | 9 11 13 | spcgf | ⊢ ( 𝑤 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
| 15 | 14 | elv | ⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝑦 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 16 | 8 15 | eqtr3d | ⊢ ( ∀ 𝑥 𝑦 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 17 | 16 | alrimivv | ⊢ ( ∀ 𝑥 𝑦 = 𝐴 → ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 18 | sbnfc2 | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑧 ∀ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) | |
| 19 | 17 18 | sylibr | ⊢ ( ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 21 | 1 20 | syl | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |