This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Eulerian paths on the graph G . (Contributed by AV, 18-Feb-2021) (Revised by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupths.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | eupths | ⊢ ( EulerPaths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom 𝐼 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) | |
| 3 | 2 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = 𝐼 ) |
| 4 | 3 | dmeqd | ⊢ ( 𝑔 = 𝐺 → dom ( iEdg ‘ 𝑔 ) = dom 𝐼 ) |
| 5 | foeq3 | ⊢ ( dom ( iEdg ‘ 𝑔 ) = dom 𝐼 → ( 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ↔ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom 𝐼 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑔 = 𝐺 → ( 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ↔ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom 𝐼 ) ) |
| 7 | df-eupth | ⊢ EulerPaths = ( 𝑔 ∈ V ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } ) | |
| 8 | 6 7 | fvmptopab | ⊢ ( EulerPaths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom 𝐼 ) } |