This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of all Eulerian paths on an arbitrary graph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eupth | ⊢ EulerPaths = ( 𝑔 ∈ V ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ceupth | ⊢ EulerPaths | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | vp | ⊢ 𝑝 | |
| 5 | 3 | cv | ⊢ 𝑓 |
| 6 | ctrls | ⊢ Trails | |
| 7 | 1 | cv | ⊢ 𝑔 |
| 8 | 7 6 | cfv | ⊢ ( Trails ‘ 𝑔 ) |
| 9 | 4 | cv | ⊢ 𝑝 |
| 10 | 5 9 8 | wbr | ⊢ 𝑓 ( Trails ‘ 𝑔 ) 𝑝 |
| 11 | cc0 | ⊢ 0 | |
| 12 | cfzo | ⊢ ..^ | |
| 13 | chash | ⊢ ♯ | |
| 14 | 5 13 | cfv | ⊢ ( ♯ ‘ 𝑓 ) |
| 15 | 11 14 12 | co | ⊢ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) |
| 16 | ciedg | ⊢ iEdg | |
| 17 | 7 16 | cfv | ⊢ ( iEdg ‘ 𝑔 ) |
| 18 | 17 | cdm | ⊢ dom ( iEdg ‘ 𝑔 ) |
| 19 | 15 18 5 | wfo | ⊢ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) |
| 20 | 10 19 | wa | ⊢ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) |
| 21 | 20 3 4 | copab | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } |
| 22 | 1 2 21 | cmpt | ⊢ ( 𝑔 ∈ V ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } ) |
| 23 | 0 22 | wceq | ⊢ EulerPaths = ( 𝑔 ∈ V ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ∧ 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) –onto→ dom ( iEdg ‘ 𝑔 ) ) } ) |