This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Eulerian paths on the graph G . (Contributed by AV, 18-Feb-2021) (Revised by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupths.i | |- I = ( iEdg ` G ) |
|
| Assertion | eupths | |- ( EulerPaths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | |- I = ( iEdg ` G ) |
|
| 2 | fveq2 | |- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
|
| 3 | 2 1 | eqtr4di | |- ( g = G -> ( iEdg ` g ) = I ) |
| 4 | 3 | dmeqd | |- ( g = G -> dom ( iEdg ` g ) = dom I ) |
| 5 | foeq3 | |- ( dom ( iEdg ` g ) = dom I -> ( f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) <-> f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) ) |
|
| 6 | 4 5 | syl | |- ( g = G -> ( f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) <-> f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) ) |
| 7 | df-eupth | |- EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |
|
| 8 | 6 7 | fvmptopab | |- ( EulerPaths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) } |