This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pseudograph with an Eulerian circuit <. F , P >. (an "Eulerian pseudograph") has only vertices of even degree. (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eulerpathpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | eulercrct | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ 𝑉 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpathpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → 𝐺 ∈ UPGraph ) | |
| 4 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 5 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 8 | simpr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 9 | 1 2 3 7 8 | eupth2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 11 | crctprop | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 12 | 11 | simprd | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 14 | 13 | iftrued | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) = ∅ ) |
| 15 | 14 | eqeq2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ) ) |
| 16 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 17 | notnotr | ⊢ ( ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) → 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 18 | 17 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑉 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 19 | 16 18 | sylbi | ⊢ ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ → ∀ 𝑥 ∈ 𝑉 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 20 | 15 19 | biimtrdi | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) → ∀ 𝑥 ∈ 𝑉 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 21 | 10 20 | mpd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ 𝑉 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) |