This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufunc.f | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| eufunc.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| eufunc.0 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| eufunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| Assertion | eufunclem | ⊢ ( 𝜑 → 𝐵 ≼ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufunc.f | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 2 | eufunc.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | eufunc.0 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 4 | eufunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 5 | eqid | ⊢ ( 𝐷 Δfunc 𝐶 ) = ( 𝐷 Δfunc 𝐶 ) | |
| 6 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 8 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 9 | 1st2ndbr | ⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st ‘ 𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑓 ) ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 1st ‘ 𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑓 ) ) |
| 11 | 10 | funcrcl3 | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐷 ∈ Cat ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐷 ∈ Cat ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 14 | 10 | funcrcl2 | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐶 ∈ Cat ) |
| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝐶 ∈ Cat ) |
| 16 | 7 15 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 17 | 5 13 16 4 2 3 | diag1f1 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐷 Δfunc 𝐶 ) ) : 𝐵 –1-1→ ( 𝐶 Func 𝐷 ) ) |
| 18 | ovex | ⊢ ( 𝐶 Func 𝐷 ) ∈ V | |
| 19 | 18 | f1dom | ⊢ ( ( 1st ‘ ( 𝐷 Δfunc 𝐶 ) ) : 𝐵 –1-1→ ( 𝐶 Func 𝐷 ) → 𝐵 ≼ ( 𝐶 Func 𝐷 ) ) |
| 20 | 17 19 | syl | ⊢ ( 𝜑 → 𝐵 ≼ ( 𝐶 Func 𝐷 ) ) |
| 21 | euen1b | ⊢ ( ( 𝐶 Func 𝐷 ) ≈ 1o ↔ ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 22 | 1 21 | sylibr | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) ≈ 1o ) |
| 23 | domentr | ⊢ ( ( 𝐵 ≼ ( 𝐶 Func 𝐷 ) ∧ ( 𝐶 Func 𝐷 ) ≈ 1o ) → 𝐵 ≼ 1o ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( 𝜑 → 𝐵 ≼ 1o ) |