This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufunc.f | |- ( ph -> E! f f e. ( C Func D ) ) |
|
| eufunc.a | |- A = ( Base ` C ) |
||
| eufunc.0 | |- ( ph -> A =/= (/) ) |
||
| eufunc.b | |- B = ( Base ` D ) |
||
| Assertion | eufunclem | |- ( ph -> B ~<_ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufunc.f | |- ( ph -> E! f f e. ( C Func D ) ) |
|
| 2 | eufunc.a | |- A = ( Base ` C ) |
|
| 3 | eufunc.0 | |- ( ph -> A =/= (/) ) |
|
| 4 | eufunc.b | |- B = ( Base ` D ) |
|
| 5 | eqid | |- ( D DiagFunc C ) = ( D DiagFunc C ) |
|
| 6 | euex | |- ( E! f f e. ( C Func D ) -> E. f f e. ( C Func D ) ) |
|
| 7 | 1 6 | syl | |- ( ph -> E. f f e. ( C Func D ) ) |
| 8 | relfunc | |- Rel ( C Func D ) |
|
| 9 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
|
| 10 | 8 9 | mpan | |- ( f e. ( C Func D ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 11 | 10 | funcrcl3 | |- ( f e. ( C Func D ) -> D e. Cat ) |
| 12 | 11 | exlimiv | |- ( E. f f e. ( C Func D ) -> D e. Cat ) |
| 13 | 7 12 | syl | |- ( ph -> D e. Cat ) |
| 14 | 10 | funcrcl2 | |- ( f e. ( C Func D ) -> C e. Cat ) |
| 15 | 14 | exlimiv | |- ( E. f f e. ( C Func D ) -> C e. Cat ) |
| 16 | 7 15 | syl | |- ( ph -> C e. Cat ) |
| 17 | 5 13 16 4 2 3 | diag1f1 | |- ( ph -> ( 1st ` ( D DiagFunc C ) ) : B -1-1-> ( C Func D ) ) |
| 18 | ovex | |- ( C Func D ) e. _V |
|
| 19 | 18 | f1dom | |- ( ( 1st ` ( D DiagFunc C ) ) : B -1-1-> ( C Func D ) -> B ~<_ ( C Func D ) ) |
| 20 | 17 19 | syl | |- ( ph -> B ~<_ ( C Func D ) ) |
| 21 | euen1b | |- ( ( C Func D ) ~~ 1o <-> E! f f e. ( C Func D ) ) |
|
| 22 | 1 21 | sylibr | |- ( ph -> ( C Func D ) ~~ 1o ) |
| 23 | domentr | |- ( ( B ~<_ ( C Func D ) /\ ( C Func D ) ~~ 1o ) -> B ~<_ 1o ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ph -> B ~<_ 1o ) |