This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one function into a singleton, assuming ax-rep . See eufsn2 for different axiom requirements. If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufsn.1 | |- ( ph -> B e. W ) |
|
| eufsn.2 | |- ( ph -> A e. V ) |
||
| Assertion | eufsn | |- ( ph -> E! f f : A --> { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | |- ( ph -> B e. W ) |
|
| 2 | eufsn.2 | |- ( ph -> A e. V ) |
|
| 3 | fconstmpt | |- ( A X. { B } ) = ( x e. A |-> B ) |
|
| 4 | mptexg | |- ( A e. V -> ( x e. A |-> B ) e. _V ) |
|
| 5 | 3 4 | eqeltrid | |- ( A e. V -> ( A X. { B } ) e. _V ) |
| 6 | 2 5 | syl | |- ( ph -> ( A X. { B } ) e. _V ) |
| 7 | 1 6 | eufsnlem | |- ( ph -> E! f f : A --> { B } ) |