This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing one edge ( I( FN ) ) from a nonempty graph G with an Eulerian circuit <. F , P >. results in a graph S with an Eulerian path <. H , Q >. . This is the special case of eucrct2eupth (with J = ( N - 1 ) ) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eucrct2eupth1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eucrct2eupth1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| eucrct2eupth1.d | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | ||
| eucrct2eupth1.c | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| eucrct2eupth1.s | ⊢ ( Vtx ‘ 𝑆 ) = 𝑉 | ||
| eucrct2eupth1.g | ⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝐹 ) ) | ||
| eucrct2eupth1.n | ⊢ ( 𝜑 → 𝑁 = ( ( ♯ ‘ 𝐹 ) − 1 ) ) | ||
| eucrct2eupth1.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| eucrct2eupth1.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | ||
| eucrct2eupth1.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | ||
| Assertion | eucrct2eupth1 | ⊢ ( 𝜑 → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eucrct2eupth1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eucrct2eupth1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eucrct2eupth1.d | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 4 | eucrct2eupth1.c | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 5 | eucrct2eupth1.s | ⊢ ( Vtx ‘ 𝑆 ) = 𝑉 | |
| 6 | eucrct2eupth1.g | ⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝐹 ) ) | |
| 7 | eucrct2eupth1.n | ⊢ ( 𝜑 → 𝑁 = ( ( ♯ ‘ 𝐹 ) − 1 ) ) | |
| 8 | eucrct2eupth1.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 9 | eucrct2eupth1.h | ⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) | |
| 10 | eucrct2eupth1.q | ⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) | |
| 11 | eupthiswlk | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 12 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 13 | nn0z | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 14 | 13 | anim1i | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝐹 ) ) ) |
| 15 | elnnz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝐹 ) ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 17 | 16 | ex | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 18 | 3 11 12 17 | 4syl | ⊢ ( 𝜑 → ( 0 < ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 19 | 6 18 | mpd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 20 | fzo0end | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 22 | 7 21 | eqeltrd | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 23 | 1 2 3 22 8 9 10 5 | eupthres | ⊢ ( 𝜑 → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |