This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing one edge ( I( FN ) ) from a nonempty graph G with an Eulerian circuit <. F , P >. results in a graph S with an Eulerian path <. H , Q >. . This is the special case of eucrct2eupth (with J = ( N - 1 ) ) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eucrct2eupth1.v | |- V = ( Vtx ` G ) |
|
| eucrct2eupth1.i | |- I = ( iEdg ` G ) |
||
| eucrct2eupth1.d | |- ( ph -> F ( EulerPaths ` G ) P ) |
||
| eucrct2eupth1.c | |- ( ph -> F ( Circuits ` G ) P ) |
||
| eucrct2eupth1.s | |- ( Vtx ` S ) = V |
||
| eucrct2eupth1.g | |- ( ph -> 0 < ( # ` F ) ) |
||
| eucrct2eupth1.n | |- ( ph -> N = ( ( # ` F ) - 1 ) ) |
||
| eucrct2eupth1.e | |- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| eucrct2eupth1.h | |- H = ( F prefix N ) |
||
| eucrct2eupth1.q | |- Q = ( P |` ( 0 ... N ) ) |
||
| Assertion | eucrct2eupth1 | |- ( ph -> H ( EulerPaths ` S ) Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eucrct2eupth1.v | |- V = ( Vtx ` G ) |
|
| 2 | eucrct2eupth1.i | |- I = ( iEdg ` G ) |
|
| 3 | eucrct2eupth1.d | |- ( ph -> F ( EulerPaths ` G ) P ) |
|
| 4 | eucrct2eupth1.c | |- ( ph -> F ( Circuits ` G ) P ) |
|
| 5 | eucrct2eupth1.s | |- ( Vtx ` S ) = V |
|
| 6 | eucrct2eupth1.g | |- ( ph -> 0 < ( # ` F ) ) |
|
| 7 | eucrct2eupth1.n | |- ( ph -> N = ( ( # ` F ) - 1 ) ) |
|
| 8 | eucrct2eupth1.e | |- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 9 | eucrct2eupth1.h | |- H = ( F prefix N ) |
|
| 10 | eucrct2eupth1.q | |- Q = ( P |` ( 0 ... N ) ) |
|
| 11 | eupthiswlk | |- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) |
|
| 12 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 13 | nn0z | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
|
| 14 | 13 | anim1i | |- ( ( ( # ` F ) e. NN0 /\ 0 < ( # ` F ) ) -> ( ( # ` F ) e. ZZ /\ 0 < ( # ` F ) ) ) |
| 15 | elnnz | |- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. ZZ /\ 0 < ( # ` F ) ) ) |
|
| 16 | 14 15 | sylibr | |- ( ( ( # ` F ) e. NN0 /\ 0 < ( # ` F ) ) -> ( # ` F ) e. NN ) |
| 17 | 16 | ex | |- ( ( # ` F ) e. NN0 -> ( 0 < ( # ` F ) -> ( # ` F ) e. NN ) ) |
| 18 | 3 11 12 17 | 4syl | |- ( ph -> ( 0 < ( # ` F ) -> ( # ` F ) e. NN ) ) |
| 19 | 6 18 | mpd | |- ( ph -> ( # ` F ) e. NN ) |
| 20 | fzo0end | |- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 22 | 7 21 | eqeltrd | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 23 | 1 2 3 22 8 9 10 5 | eupthres | |- ( ph -> H ( EulerPaths ` S ) Q ) |