This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to express uniqueness used by some authors. Exercise 2(b) of Margaris p. 110. (Contributed by NM, 20-Aug-1993) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 29-Oct-2018) Avoid ax-13 . (Revised by Wolf Lammen, 7-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eu1.nf | |- F/ y ph |
|
| Assertion | eu1 | |- ( E! x ph <-> E. x ( ph /\ A. y ( [ y / x ] ph -> x = y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu1.nf | |- F/ y ph |
|
| 2 | nfs1v | |- F/ x [ y / x ] ph |
|
| 3 | 2 | euf | |- ( E! y [ y / x ] ph <-> E. x A. y ( [ y / x ] ph <-> y = x ) ) |
| 4 | 1 | sb8euv | |- ( E! x ph <-> E! y [ y / x ] ph ) |
| 5 | 1 | sb6rfv | |- ( ph <-> A. y ( y = x -> [ y / x ] ph ) ) |
| 6 | equcom | |- ( x = y <-> y = x ) |
|
| 7 | 6 | imbi2i | |- ( ( [ y / x ] ph -> x = y ) <-> ( [ y / x ] ph -> y = x ) ) |
| 8 | 7 | albii | |- ( A. y ( [ y / x ] ph -> x = y ) <-> A. y ( [ y / x ] ph -> y = x ) ) |
| 9 | 5 8 | anbi12ci | |- ( ( ph /\ A. y ( [ y / x ] ph -> x = y ) ) <-> ( A. y ( [ y / x ] ph -> y = x ) /\ A. y ( y = x -> [ y / x ] ph ) ) ) |
| 10 | albiim | |- ( A. y ( [ y / x ] ph <-> y = x ) <-> ( A. y ( [ y / x ] ph -> y = x ) /\ A. y ( y = x -> [ y / x ] ph ) ) ) |
|
| 11 | 9 10 | bitr4i | |- ( ( ph /\ A. y ( [ y / x ] ph -> x = y ) ) <-> A. y ( [ y / x ] ph <-> y = x ) ) |
| 12 | 11 | exbii | |- ( E. x ( ph /\ A. y ( [ y / x ] ph -> x = y ) ) <-> E. x A. y ( [ y / x ] ph <-> y = x ) ) |
| 13 | 3 4 12 | 3bitr4i | |- ( E! x ph <-> E. x ( ph /\ A. y ( [ y / x ] ph -> x = y ) ) ) |