This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hom-set operation in the category of extensible structures (in a universe) is a function. (Contributed by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrchomfn.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| estrchomfn.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| estrchomfn.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | estrchomfn | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑈 × 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrchomfn.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | estrchomfn.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | estrchomfn.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) | |
| 5 | ovex | ⊢ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V | |
| 6 | 4 5 | fnmpoi | ⊢ ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) Fn ( 𝑈 × 𝑈 ) |
| 7 | 1 2 3 | estrchomfval | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 8 | 7 | fneq1d | ⊢ ( 𝜑 → ( 𝐻 Fn ( 𝑈 × 𝑈 ) ↔ ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) Fn ( 𝑈 × 𝑈 ) ) ) |
| 9 | 6 8 | mpbiri | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑈 × 𝑈 ) ) |