This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ercnv | ⊢ ( 𝑅 Er 𝐴 → ◡ 𝑅 = 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | errel | ⊢ ( 𝑅 Er 𝐴 → Rel 𝑅 ) | |
| 2 | relcnv | ⊢ Rel ◡ 𝑅 | |
| 3 | id | ⊢ ( 𝑅 Er 𝐴 → 𝑅 Er 𝐴 ) | |
| 4 | 3 | ersymb | ⊢ ( 𝑅 Er 𝐴 → ( 𝑦 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | 5 6 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 8 | df-br | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) | |
| 9 | 7 8 | bitr3i | ⊢ ( 𝑦 𝑅 𝑥 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) |
| 10 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 11 | 4 9 10 | 3bitr3g | ⊢ ( 𝑅 Er 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) ) |
| 12 | 11 | eqrelrdv2 | ⊢ ( ( ( Rel ◡ 𝑅 ∧ Rel 𝑅 ) ∧ 𝑅 Er 𝐴 ) → ◡ 𝑅 = 𝑅 ) |
| 13 | 2 12 | mpanl1 | ⊢ ( ( Rel 𝑅 ∧ 𝑅 Er 𝐴 ) → ◡ 𝑅 = 𝑅 ) |
| 14 | 1 13 | mpancom | ⊢ ( 𝑅 Er 𝐴 → ◡ 𝑅 = 𝑅 ) |